A TERMÉSZETRŐL TIZENÉVESEKNEK

FIZIKA
Mechanika
Hőtan

Alkotószerkesztő: dr. Halász Tibor

TIZENHETEDIK, VÁLTOZATLAN KIADÁS

MOZAIK KIADÓ – SZEGED, 2020
„Ami közel van, hogy rohan hátrafelé, eszeveszsetten!
De milyen híven-komolyan tart velünk, ami messze van –
akár szivemben.

Hogy nyargalnak hátra a fák,
a sürgönypóznák a sín mellett!
De ti, ti messzi hű tanyák,
akár a mult, az ifjúság,
tí úgy követtek.”

Illyés Gyula: Vonatból
TARTALOM

I. AZ ANYAG NÉHány TULAJDONSÁGA, KÖLCSÖNHATÁSOK

1. Az anyag belső szerkezete .. 10
2. A testek néhány mérhető tulajdonsága
 és ezek jellemző mennyiségei (Kiegészítő anyag) ... 14
3. Termikus és mechanikai kölcsönhatások 17
4. A mágneses, az elektromos
 és a gravitációs kölcsönhatás 20
 Keresd a megoldást! .. 24
 Összefoglalás ... 26

II. A TESTEK MOZGÁSA

1. A hely és a mozgás viszonylagos
 (Kiegészítő anyag) .. 28
2. Az egyenes vonalú egyenletes mozgás 30
3. A változó mozgás ... 35
4. Az egyenletesen változó mozgás.
 A gyorsulás fogalma ... 37
 Keresd a megoldást! .. 40
 Összefoglalás ... 42

III. A DINAMIKA ALAPJAI

1. A tehetetlenség törvénye. A tömeg 44
2. A súrűség ... 47
3. Az erő fogalma ... 51
4. A legismertebb erőfajták ... 54
5. Az erőmérés. Erő–ellenerő 58
6. Több erőhatás együttes eredménye 61
7. A súrlódási és a közegellenállási erő 63
8. A forgatónyomaték ... 67
 Keresd a megoldást! .. 70
 Összefoglalás ... 72
IV. A NYOMÁS
1. A nyomás fogalma .. 74
2. A folyadékok nyomása ... 78
3. A gázok nyomása .. 81
4. Közlekedőedények, hajszálcsövek 85
5. A felhajtóerő. Arkhimédész törvénye 87
6. A testek úszása, lebegése és elmerülése 89
Keresd a megoldást! .. 92
Összefoglalás ... 94

V. ENERGIA, ENERGIAVÁLTOZÁSOK
1. Az energia fogalma .. 96
2. A munkavégzés és a munka 99
3. Az egyszerű gépek ... 102
5. Az égés (Kiegészítő anyag) ... 110
6. A teljesítmény ... 113
7. A hatásfok .. 116
Keresd a megoldást! .. 118
Összefoglalás ... 122

VI. HŐJELENSÉGEK
1. A hőterjedés ... 124
2. A hőtáglulás ... 126
3. Halmazállapot-változások .. 130
4. Az oldódás nem olvadás! (Kiegészítő anyag) 138
5. Hőerőgépek (Kiegészítő anyag) 140
Keresd a megoldást! .. 150
Összefoglalás ... 152

TÁBLÁZATOK .. 154
IDŐTÉRKÉP ... 156
AZ ÚJ SZAKSZAVAK JEGYZÉKE 158
Vastag betűkkel a fontos megállapításokat és az új fogalmak nevét írtuk.
Ezzel a bal oldali sávval és kisebb betűkkel hívjuk fel a figyelmet a kísérletekre, amelyek megismerése és megértése nélkül nem lehet feldolgozni a tananyagot.

A kisebb terjedelmű kiegészítő anyagokat a melléjük húzott szürke sávról és apró betűs írásukról ismerhetjük fel.
A fenyő és a zöld sáv a környezetvédelem fontosságára hívja fel a figyelmet.

"Figyeld meg!" című részek kiegészítik, elmélyítik a tanultakat.

Az "Ellenőrizd tudásod!" cím alatti kérdésekre feltétlenül tudnod kell a választ!

A Gondolkozz és válasszolj! számítás nélkül megoldható feladatokra hívja fel a figyelmet.

Az Olvasd el! című részekben fizikával kapcsolatos érdekességek találhatók.

KEDVES TANULÓK!
Az emberek évezredek óta figyelik a körülötteik levő természetet. Az emberiség fejlődése, tudása szorosan kapcsolódik ehhez a tevékenységhez. Sok-sok évi tapasztalat eredménye, hogy egyre többet tudunk a természetben lejátszódó változásokról, jelenségekről.
A természetet sokféle módszerrel, sokféle szempontból, minél több oldalról ígyegyünk megismerni.
2000 évvel ezelőtt ezt még egy ember is megtehette, hiszen akkor a maihoz hasonlítva nagyon kevés volt tudat a természet különböző szempontból vizsgáló természettudományok. Ma már összehangolt munkamegosztás szükséges a biológia, a füzió, a kémia és a többi természettudomány között, hogy minél alaposabban megismerjük a világot.
A fizika érdekes, hasznos tudomány. A természeti jelenségek megismeréséhez, megértéséhez nélkülözhetetlen. Kit ne érdekelne,hogyan keletkezik a világ és a szívárvány, miért repeszti szét a sziklát a jég, miért merül el a vízben a vas darab, és miért úszik a vasból készült hajó, hagyon működik a fény képezőgép és a rakéta, a vadászrepülőgép és az atomerőmű?

Ne rettejtek szükségesség, ez az ismeretekre, amelyeknek alapja az általános iskolai fizikaórakon tanuljátok meg. Ez azonban nem elegendő. A meg szerzett ismeretek csak akkor hasznosnak, ha alkalmazni is tudjátok azokat. Az ismeretek alkalmazása során újabb és újabb felismerésre juthatók, bővíve ezáltal is tudásotokat. Ezért magatok is végezzetek megfigyeléseket, kísérleteket, oldjatok meg problémákat!

Ehhez kívánunk sok sikert e könyv Szerzői
I. fejezet

AZ ANYAG NÉHÁNY TULAJDONSÁGA, KÖLCSÖNHatások
AZ ANYAG NÉHány TULAJDONSÁGA, KÖLCSÖNHATÁSOK

1. AZ ANYAG BELSŐ SzerkeZETE

AZ ANYAG SzerkeZETE LÉGNEMŰ HALMAZÁLLAPOTBAN

A bennünket körülvevő testek különféle anyagokból épülnek fel. A kalapács feje legtöbbször vasból, a nyele fából van. Szomjunkat vízzel oltjuk. Légzéskor tüdőnkbe levegőt szívunk. A vas, a fa, a víz, a levegő anyag.

A kalapácsot, egy pohár vizet, a tüdőt megtöltő levegőt a fizikában testnek szokás tekinteni.

A különféle anyagú testek eltérő tulajdonságúak lehetnek. Ezek a tulajdonságok gyakran megváltozhatnak. Ilyenkor azt mondjuk, hogy megváltozott a test állapota. A jég, a víz, a vízgőz például ugyanaz az anyag, csak más a halmazállapota.

Az anyagok legtöbb tulajdonsága belső szerkezetükkel kapcsolatos.

Az orvosi fecskendőbe vagy kerékpár pumpába zárt levegő összenyomható. A levegő tehát nem tölti ki hézagmentesen a rendelkezésre álló zárt tartályt.

Ez és sok más tapasztalat azt mutatja, hogy a légzemű anyag kis önálló részecskék (korpuszkulák) sokasága.

10.1. A jég, a víz és a vízgőz ugyanaz az anyag.

10.2. Miért érezhető a kávé illata a pohártól távol is?

A corpusculum – latin szó, jelentése: testecské, parány. Ebből származik a korpuszkula szó, melyet a fizika az anyagot felépítő különféle részecskék közös megnevezésére használ.

10.3. Miért zegzugos a gázrészecskék mozgása?

A gázok részecskéi állandóan mozognak, rendelzetenül nyúzsögné.

A gázrészecskék mozgásuk közben egymással és a tároló edény falával ütköznek. Így mozgásuk zegzugos. Két ütközés között egyenes vonalon változatlan sebességgel haladnak.

A gázoknak sem önálló alakjuk, sem önálló térfigatuk nincs. Egyenletes eloszlásban töltik ki a rendelkezésükre álló teret.
AZ ANYAG SZERKEZETE
CSEPPFOLYÓS HALMAZÁLLAPOTBAN

A vízgőz részecskéi lecsapódáskor vízcespekké állnak össze. A vizet is ugyanolyan részecskék alkotják, mint a vízgőzt.

Az anyag cseppfolyós halmazállapotban is önálló részecskék sokasága.

Ha vizet és alkoholt összekeverünk, akkor együttes térfigátuk kisebb lesz, mint a külön-külön mért térfigatuk összege.

Hasonló a helyzet mák és bab összekeverésekor is. 50 cm³ mákot és 50 cm³ babot összekeverve a keverék térfogata kisebb lesz, mint 100 cm³. A babszemek ugyanis nem hzăgmentesen töltik ki az edényt, és a mákszemek egy része a babszemek közötti hézagokat tölti ki. Ezzel a kísérlettel szemléletet (modellze) lehet az alkoloh és víz keverékeben a részecskék elhelyezkedését.

A különféle folyadékok részecskéi különbözőek. A folyadékrészecskék érintkeznek egymással, de úgy, hogy hizagok vannak közöttük.

Ha egy pohárba málnaszörpöt töltünk, és fölé óvatosan vizet öntünk, a két folyadék rétegesen helyezkedik el. Megfigyelhető, hogy egy-két nap alatt a két különféle folyadék Külső beavatkozás nélkül is elkeveredik.

Kísérlettel igazolható, hogy vannak olyan folyadékok, amelyek külső beavatkozás nélkül is elkeverednek. A folyadékok külső hatás nélküli keveredését diffúzióknak nevezzük.

Ez és sok más tapasztalat azt igazolja, hogy a folyadékok részecskéi is állandóan mozognak, egymáson elgördülve, rendezetlenül változtatják helyüket.

A folyékony halmazállapotú anyag térfogata állandó, de önálló alakja nincsen, mindig a tárolóedény alakját veszi fel.

A BROWN-MOZGÁS

11.1. Mi lesz a lecsapódó gőzből?

11.2. A folyadékok keveredésének modellezése.

11.3. Miért keveredik el a víz és a málnaszörp külső hatás nélkül is?

A diffúzió – latin eredető szó, jelentése: szétterjedés, terjeszkedés.

AZ ANYAG SZERKEZETE SZILÁRD HALMAZÁLLAPOTBAN

Ha a víz megfagy, szilárd halmazállapotú lesz. A szilárd halmazállapotú anyag is részecskeszerkezetű. Ezek a részecskék azonban nem változtatják helyüket, de helyükhöz „kötve” állandóan reznegnek.

A szilárd halmazállapotú testeknek az alakja és a térfogata állandó.

VONZÁS AZ ANYAG RÉSZECSEKÉI KÖZÖTT

A zsineget elszakítani, a pálcát eltörni nehéz. A szilárd testék részecskéit egymástól eltávolítani csak nagy erővel lehet. A szilárd test részecskéi között vonzóerő van.

Ezt bizonyítja az is, hogy az erősen összenyomott ólomfelületek összetapadnak. A két ólomfelületet azért kell erősen összenyomni, hogy sok részecske kerüljön nagyon közel egymáshoz. A részecskék ugyanis csak nagyon közelről képesek vonzani egymást. Ez a vonzás szilárd anyagoknál nagyon erős.

A kilöttyent folyadék cseppeket alkot. A drótkeretre lazán kötött cérrát a szappanhártya körív alakúra feszíti meg.

Ezek a tapasztalatok azt bizonyítják, hogy a folyadék részecskéi között is van vonzás. Ez azonban sokkal kisebb, mint a szilárd anyagok részecskéi között levő összetartó erő.

A légénmű anyagok részecskéi legtöbbször olyan távol vannak egymástól, hogy közöttük nem érvényesül a vonzóerő.

Nemcsak az azonos, hanem a különféle anyagok részecskéi között is van vonzás. Ezért marad peldául vízes az az üvegphár, amelyből kiöntötték a vízét.

Az anyagok részecskéi közötti vonzás nemcsak hasznos, hanem sokszor káros következményekkel is járhat a természetben.

12.1. A szilárd anyag részecskéinek rendezetlen rezgését például rugókkal kikötött golyók mozgásával szemlélhetjük, modellzhetjük.

12.2. Összenyomáskor miért tapad össze a két ólomcső?

12.3. A cérnaszálat az összehúzódó szappanhártya feszíti meg.

12.4. A madarak elpusztulnak, ha a tollukra olaj tapad.
A víz az üveget nedvesítő folyadék. Az üveg részecskéi ugyanis jobban vonzzák a vízrészecskéket, mint azok egymást.

A higany az üveget nem nedvesítő folyadék, mert a higany részecskéi jobban vonzzák egymást, mint az üveg a higany részecskéit.

A zsíros vagy olajos kezünkről azért pereg le a víz, mert az olajat a víz nem nedvesíti.

Az, hogy egy folyadék egy testet nedvesít-e vagy sem, attól függ, hogy a folyadék részecskéi vagy a test és a folyadék részecskéi között erősebb-e a vonzás.

ELLENÖRIZD TUDÁSOD!

1. Sorold fel az anyag lehetséges halmazállapotait!
2. Jellemezd az anyag szerkezetét az egyes halmazállapotokban!
3. Mi a neve annak a jelenségnek, melynek során a különböző folyadékok részecskéi külső hatás nélkül összekeverednek?
4. Hasonlítsd össze a szilárd, a folyékony és a légnemű halmazállapotú anyag részecskéinek mozgását!
5. Mi a különbség a szilárd, a folyékony és a légnemű halmazállapotú anyag részecskéi között levő vonzóerők között?

GONDOLKOZZ ÉS VÁLASZOLJ!

1. A víz milyen halmazállapotait fejezzük ki a következő szavakkal: zúzmara, köd, dér, hó, felhő, pára, harmat?
2. Sorolj fel olyan tényeket, amelyek az anyag részecskéinek mozgását igazolják!
3. Ha egy felelőtlen ember bedobná a tóba felesleges vagy megromlott vegyszeret, akkor az csak a bedobás helyén mérgezné az élőlényeket? Indokold állításodat!
4. Miért izzítja fel és miért kalapálja egymáshoz a kovács az összeerősíthető vasdarabokat?
5. Két fémdarab összeerősíthető-e préseléssel? Miért?
6. Miért veszélyes a tengerbe ömlött olaj a madarakra?

KÍSÉRLETEZZ!

1. Készíts szappanoldatot!
 – Végezd el a drótkeretes kísérletet (12.3. ábra)!
 – Fújj szívószállal szappanbuborékot! Hagyd a buborékot a függőleges helyzetbe állított szívószálon, és figyeld meg, mi történik vele! Magyarázd meg a jelenséget!
2. Cseppents vizet, majd olajat egy madár elhullajtott tollára! Mit tapasztalsz?
III. fejezet

A DINAMIKA ALAPJAI
A DINAMIKA ALAPJAI

1. A TEHETETLENSÉG TÖRVÉNYE. A TÖMEG

A nyílvesszőt az íj indítja el, gyorsújtja fel. A szabadon eső test a gravitációs mező hatására gyorsul. Tapasztalataink azt igazolják, hogy:

A testek mozgásállapotának változását mindig más – velük kölcsönhatásban levő – test vagy mező okozza.

Ez azt jelenti, hogy egyetlen test sem képes mozgásállapotát önmaga megváltoztatni. A testeknek ezt a tulajdonságát tehetetlenségnek nevezzük.

Másként fogalmazva:

Minden test nyugalomban marad vagy egyenes pályán egyenletesen mozog mindaddig, míg környezete meg nem változtatja a mozgásállapotát.

Ez a tehetetlenség törvénye, melyet Newton I. törvényének is szokás nevezni.

A nyílt pályán egyenes vonalú egyenletes mozgást végző vonatban a csomagtartón elhelyezett bőröndök nyugalomban vannak a vonathoz képest.

Ha azonban a vonat hirtelen fékez vagy elindul, akkor a csomagok leeshetnek a csomagtartóról, pedig újabb erőhatás nem éri őket.

Ilyenkor a csomagok sebessége csak a vonathoz viszonyítva lesz más, a földhöz képest nem. Ezek a csomagok – a földhöz viszonyítva – megtartják mozgásállapotukat.

A földhöz viszonyítva tehát igaz a tehetetlenség törvénye, a változó sebességgel vonathoz képest azonban nem.

Az olyan vonatkoztatási rendszert, amelyben igaz a tehetetlenség törvénye, tehetetlenségi rendszernek, másként inerciarendszernek nevezzük.

Környezetünkben a mozgások vizsgálatánál inerciarendszerek tekintetében a Föld felületéhez viszonyítva nyugalomban levő vagy egyenes vonalú egyenletes mozgást végző testek.

A jelenségeket mi mindig inerciarendszerhez viszonyítva vizsgáljuk és írjuk le.
A TESTEK TÖMEGE

45.1. Az üres vagy a megrakott teherautó gyorsul könnyebben?

Ugyanaz a személyautó könnyebben gyorsul, ha csak a vezető ül benne, mint ha utasokat is szállít. Az átázott bôrlabdát nehezebb elrúgni, mint a szárazat.

Az egyik testnek könnyebb, a másikonak nehezebb megváltoztatni a sebességét.

A testek tehetségeségének nagysága tehát különböző lehet. Egy állványról ugyanazzal a rugóval szétlökött két golyó sebessége azonos feltételek között változik. Ezekre a sebességváltozásokra az egyszerre földet érő golyók repülési távolságából tudunk következtetni.

Két test tehetségeségét úgy lehet összehasonlítani, hogy az azonos feltételek között létrejött sebességváltozásait hasonlítsuk össze.

Annak a testnek nagyobb a tehetségeségének nagysága tehát különböző lehet. Egy állványról ugyanazzal a rugóval szétlökött két golyó sebessége azonos feltételek között változik. Ezekre a sebességváltozásokra az egyszerre földet érő golyók repülési távolságából tudunk következtetni.

Annak a testnek nagyobb a tehetségeségének nagysága tehát különböző lehet. Egy állványról ugyanazzal a rugóval szétlökött két golyó sebessége azonos feltételek között változik.

A testek tehetségeségének mérévéhez jellemző mennyiség a tömeg.

A tömeg jele: \(m \).

A tömeg mértékegysége a kilogramm, jele: kg.

1 kg például 1 dm\(^3\) 4 °C hőmérsékletű desztillált víz tömege. A gyakorlatban használt tömegegység még a gramm (g) és a tonna (t) is.

45.2. Akkor azonos a sebességváltozás felétele, ha mindkét test egyenlő nagyságú erőhatás egyenlő ideig ér.

A massa (massa) – latin szó, jelentése: tömeg. Ebből származik az „\(m \)“ jelölés.

\[
1 \text{ g} < 1 \text{ kg} < 1 \text{ t}
\]

45.3. Méréskor a mérettest tömegéhez hasonlítsuk a többi test tömegét.
1. Mi szükséges ahhoz, hogy egy test mozgásállapota megváltozzon?
2. Fogalmazd meg a tehetetlenség törvényét!
3. Hogyan döntheted el, hogy két test közül melyiknek nagyobb a tehetetlensége?
4. Mi a tömeg? Sorold fel a mértékegységeit!
5. Hogyan lehet a test tömegét megmérni?

TÖMEGMÉRÉS

A mindennapi életben a testek tömegét különféle mérlegekkel (például egyenlő karú, vagy számki-jelzéses, azaz digitális automata mérleggel) szokás mérni.

Ha az egyenlő karú mérleg egyik serpenyőjében nagyobb tömegű test van, mint a másikban, akkor a jobban leterhelt serpenyő lesüllyed. Amikor a két serpenyőbe egyenlő tömegű testeket helyezünk, a mérleg egyensúlyban marad.

Egy test tömegének mérésekor az egyenlő karú mérleg egyik serpenyőjébe a mérendő tömegű testet helyezzük, a másikba pedig összeválogatunk ismert tömegű testek sorozatából annyit, hogy a mérleg egyensúlyba kerüljön. Ilyen esetben az ismert testek tömegének összege egyenlő a másik serpenyőben lévő test tömegével.

A testek tömegét szétlokékeses (dinamikai) módszerrel is lehet mérni. Ez a módszer azonban a gyakorlati életben nehézkes, ezért nem alkalmazzák. A tudományos kísérletekben (pl. űrhajózás) más módon is mérnek tömeget.

ELLENŐRIZD TUDÁSOD!

1. Mi szükséges ahhoz, hogy egy test mozgásállapota megváltozzon?
2. Fogalmazd meg a tehetetlenség törvényét!
3. Hogyan döntheted el, hogy két test közül melyiknek nagyobb a tehetetlensége?
4. Mi a tömeg? Sorold fel a mértékegységeit!
5. Hogyan lehet a test tömegét megmérni?

GONDOLKOZZ ÉS VÁLASZOLJ!

1. A vonat csomagtartójához hosszú fonalat erősítünk, melynek másik végére egy nehezét- ket kötünk. Mértünk az így kapott ingával, ha a vonat elindul, fékez, illetve kanyarodik? Magyarázd meg, miért!
2. Miért kell kapaszkodni a mozgó járművekben álló utasoknak?
3. Miért szorul nyelére a kalapács feje, ha a nyél végét a földhöz ütögetjük?
4. Miért repülnek ki a por- vagy vízrészecskék, ha egy szőnyeget vagy egy nedves ruhát rázunk?
5. Mennyi 3 dm³ 4 °C-os víz tömege?
V. fejezet

ENERGIA, ENERGIA-VÁLTOZÁSOK
1. AZ ENERGIA FOGLALMA

VÁLTOZTATÓKÉPESSÉG ÉS AZ ENERGIA

A laza rugó nem tudja ellököni az elé helyezett golyót. A megfeszített rugó viszont meg tudja változtatni a golyó mozgásállapotát. **A megfeszített rugónak változtatóképessége van.**

Tapasztalatból tudjuk, hogy egy rugónak annál nagyobb a változtatóképessége, minél erősebb, és minél jobban meg van feszítve.

A kalapáccsal ütögetett szeg felmelegszik, és alakja is megváltozik. Az egymásnak ütköző golyók is megváltoztatják egymás sebességét. **A testeknek mozgássuk miatt is van változtatóképességük.**

A mozgó test változtatóképessége annál nagyobb, minél nagyobb a test tömege és sebessége.

A meleg víz felmelegíti a behelyezett hidegebb testet. Az égő gáz forró lánjája felmelegíti a fölé helyezett edényt, a meleg edény pedig a benne levő hidegebb vízét. Tehát **a testeknek van a hőmérsékletükkel kapcsolatos változtatóképességük is.**

Egy testnek annál nagyobb ez a változtatóképessége, minél nagyobb a test tömege, és minél magasabb a hőmérséklete.

A testeknek sok más okból is lehet változást létrehozó képessége. Ahhoz, hogy megadhassuk egy test változtatóképességének nagyságát, célzottan bevezetni egy mennyiséget.

Azt a mennyiséget, amellyel megadjuk, hogy melyik testnek annál nagyobb a változtatóképessége, energiának nevezzük.

Az energia jele: **E.**

A megfeszített rugó energiáját **rugalmas energiának** nevezzük és **E_r-rel jelöljük.** Egy rugónak annál nagyobb a rugalmas energiája, minél erősebb a rugó, és minél jobban meg van feszítve.

A mozgó testnek **mozgási energiája** (**E_m**) van. Egy testnek annál nagyobb a mozgási energiája, minél nagyobb a tömege és a sebessége.

96.1. A megfeszített rugó képes mozgásba hozni az elé tett golyót.

96.2. Rugalmas golyók ütközésekor mozgásállapotuk megváltozik.

96.3. Nevezd meg a kép alapján a termikus kölcsönhatás részvevőit!

Az energia – görög szó, jelentése: valamilyen tevékenység alapja.
Minden testnek van – a hőmérsékletével kapcsolatos – úgynevezett belső energiája \((E_b) \). Akkor nagyobb egy test belső energiája, ha nagyobb a tömege és magasabb a hőmérséklete.

A fenti energiafajták kívül a hétköznapi életben és a tudományban más energiafajtákról is beszélünk. Például: elektromos-, kémiai-, atomenergia stb. Ez is azt igazolja, hogy az energia az egyik legáltalánosabban használt, nagy jelentőségű mennyiség.

A TESTEK ENERGIÁJÁNAK MEGVÁLTOZÁSA KÖZBEN

Ha a meleg vízzel telt poharat hideg vízbe tesszük, a meleg víz lehűl, a hideg felmelegszik. Mindkettőnek megváltozik az állapota. Ezt a változást hőmérsékletével megváltozása jelzi. Amikor a meleg víznek csökken a hőmérséklete, kisebb lesz a belső energiája. A hideg víznek nő a hőmérséklete, tehát nagyobb lesz a belső energiája. **Termikus kölcsönhatás közben** a melegebb testnek csökken, a hidegebbnek nő a belső energiája.

Ha egy mozgó golyó egy nyugvó golyónak ütközik, mindkettőnek megváltozik az állapota. Ezt a változást sebességük megváltozása jelzi: a nyugvó golyó felgyorsul, a mozgó lelassul. **Ütközés közben változik a golyók mozgási energiája is, a lassulóé csökken, a gyorsulóé nő.**

Amikor a megfeszített rugó ellöki a golyót, megváltozik mind a rugó, mind a golyó állapota. Ezt a változást a rugó alakjának (feszítettségének), illetve a golyó sebességének változása jelzi. Az állapotváltozással együtt változik mindkét test energiája is. **A rugó rugalmas energiája csökken, a golyó mozgási energiája nő.**

A vizsgált kölcsönhatások közben mindkét test állapota – így energiája is – megváltozott. Az egyik test energiája csökken, a másiké nőtt.

Minden tapasztalat és mérés azt igazolja, hogy:

Két test kölcsönhatása közben amennyivel nő az egyik test energiája, ugyanannyival csökken a másiké. Ez az energiamegmaradás törvénye.
FIGYELED MEG!

2. Mivel a gravitációs, az elektromos és a mágneses mező is képes változást létrehozni a vele kölcsönhatásban levő testen, ezért a mezőknek is van energiájuk.

ELLENŐRIZD TUDÁSOD!

1. Mit nevezünk energiának? Mi a jele?
2. Milyen energiája van a mozgó testnek, a megfeszített rugónak?
3. Milyen energiája van minden testnek?
4. Míről vehetjük észre a testek különböző állapotváltozását? Mondj példákat! Mit tudsz az energiájukról?
5. Egy kölcsönhatás közben mindkét test állapota megváltozott. Mit tudsz az energiájukról?
6. Fogalmazd meg az energiamegmaradás törvényét!

GONDOLKOZZ ÉS VÁLASZOLJ!

1. Hogyan változik a palacsintasütő belső energiája, ha gázláng fölé tesszük?
2. Tűzhelyen két fazékban víz forr. Az egyikben 1 kg, a másikban 2 liter víz van. Hasonlítsd össze, melyiknek nagyobb a belső energiája?
3. Mi melegíti fel jobban a kanalat: az egy kannányi vagy az egy csészényi forró tea?
 Miért? Válaszod fogalmaz meg szak szerűen az „energia” szó használatával is!
4. Előfordulhat-e, hogy a hő melegíti fel valamit? Van-e a hónak belső energiája?
5. Hogyan lehet egy autó mozgási energiáját növelni? Hogyan lehet csökkenteni?
6. Mikor nagyobb a mozgási energiája egy ugyanakkora sebességgel guruló vasúti kocsi-
 nak: ha üres, vagy ha kövel van megrakva?
7. Lehet-e két különböző tömegű testnek egyenlő a mozgási energiája? Miért?
8. Lehet-e két különböző sebességű testnek egyenlő a mozgási energiája?
9. Mit kell csinálni a rugós puskával, mielőtt lőni akarunk vele? Miért?
10. Felhúzáskor hogyan változik az óra rugójának rugalmas energiája?
11. Egy rugós óra 48 óra alatt „jár le”. Hogyan változik közben a rugó energiája? Miért?
12. Egy rugó visszanyerte eredeti alakját. Van-e rugalmas energiajá?
 Mi vagy a rugos energiajá?
13. Milyen energiái lehetnek egy gumilabdának?
14. Mondj példát arra, hogy az elektromos áramnak is van energiája!
15. Miből vehető észre, hogy a fénynek is van energiája?